Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D

نویسندگان

  • Antonio Hernández-Vela
  • Miguel Ángel Bautista
  • Xavier Perez-Sala
  • Víctor Ponce-López
  • Sergio Escalera
  • Xavier Baró
  • Oriol Pujol
  • Cecilio Angulo
چکیده

We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-ofVisual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel Probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard Preprint submitted to Pattern Recognition Letters September 2, 2013 BoVW model and DTW approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability-Based Dynamic Time Warping for Gesture Recognition on RGB-D Data

Dynamic Time Warping (DTW) is commonly used in gesture recognition tasks in order to tackle the temporal length variability of gestures. In the DTW framework, a set of gesture patterns are compared one by one to a maybe infinite test sequence, and a query gesture category is recognized if a warping cost inferior to a given value is found within the test sequence. Nevertheless, either taking one...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Multi-modal Human Gesture Recognition Combining Dynamic Programming and Probabilistic Methods

Acknowledgements I want to thank the people from different institutions that supported me in the correct development of this work: Abstract In this M. Sc. Thesis, we deal with the problem of Human Gesture Recognition using Human Behavior Analysis technologies. In particular, we apply the proposed methodologies in both health care and social applications. In these contexts, gestures are usually ...

متن کامل

HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps

The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its compl...

متن کامل

3D SMoSIFT: three-dimensional sparse motion scale invariant feature transform for activity recognition from RGB-D videos

Human activity recognition based on RGB-D data has received more attention in recent years. We propose a spatiotemporal feature named three-dimensional (3D) sparse motion scale-invariant feature transform (SIFT) from RGB-D data for activity recognition. First, we build pyramids as scale space for each RGB and depth frame, and then use Shi-Tomasi corner detector and sparse optical flow to quickl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2014